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ABSTRACT

Root-zone soil moisture controls the land–atmosphere exchange of water and energy, and exhibits memory

that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil

moisture observations into a land surface model is an effective way to estimate large-scale root-zone soil

moisture. The propagation of surface information into deeper soil layers depends on the model-specific

representation of subsurface physics that is used in the assimilation system. In a suite of experiments, synthetic

surface soil moisture observations are assimilated into four different models [Catchment, Mosaic, Noah, and

Community Land Model (CLM)] using the ensemble Kalman filter. The authors demonstrate that identical

twin experiments significantly overestimate the information that can be obtained from the assimilation of

surface soil moisture observations. The second key result indicates that the potential of surface soil moisture

assimilation to improve root-zone information is higher when the surface–root zone coupling is stronger. The

experiments also suggest that (faced with unknown true subsurface physics) overestimating surface–root zone

coupling in the assimilation system provides more robust skill improvements in the root zone compared with

underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using

models with different vertical coupling strengths are comparable for different subsurface truths. Last, the skill

improvements through assimilation were found to be sensitive to the regional climate and soil types.

1. Introduction

Soil moisture (sm) plays an important role in control-

ling evaporation, plant transpiration, infiltration, and

runoff, and consequently in modulating the partitioning

of water and energy fluxes across the land–atmosphere

interface. Moreover, root-zone soil moisture provides

a critical memory function in the climate system at

monthly time scales. Characterization of soil moisture

in the root zone is therefore important for many appli-

cations, including agricultural and water resources man-

agement, short- and medium-term meteorological and

climate studies, and flood/drought forecasting. (Koster

et al. 2004; Oglesby 1991; Chen and Avissar 1994; Trier

et al. 2004; Kumar et al. 2007).

Using observation-based surface meteorological data

to drive land surface models in an uncoupled manner is

a common approach used to generate spatially and

temporally continuous estimates of land surface states,

including soil moisture (Mitchell et al. 2004; Rodell et al.

2004; Kumar et al. 2006). The estimates from these

models, however, are uncertain because of errors in
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model parameters and forcing inputs and because of

deficiencies in the model representation of land surface

processes. Indirect estimates of surface soil moisture for

the top 1–5 cm of the soil column are also available from

satellite remote sensing observations (Schmugge et al.

1980; Engman and Gurney 1991; Jackson 1993; Njoku

and Entekhabi 1995). Such satellite retrievals, however,

are subject to measurement noise and errors in retrieval

models, are limited to the top few millimeters or centi-

meters of soil, and do not provide complete spatial and

temporal coverage. An effective way to attenuate model

and observational errors and produce superior esti-

mates of soil moisture states is to constrain the land

model predictions with satellite observations of surface

soil moisture through data assimilation methods. Such

methods vertically extrapolate temporally intermittent

surface retrievals and produce estimates of root-zone

soil moisture that are generally superior to estimates

from land surface models alone (Reichle et al. 2007).

Various computational techniques have been used to

derive estimates of the soil moisture profile from surface

measurements—including regression techniques, inver-

sion of radiative transfer methods, parametric profile

models, and data assimilation methods—in conjunction

with physical models (Jackson 1986; Kostov and Jackson

1993; Jackson 1993; Entekhabi et al. 1994; Li and Islam

2002). Among these efforts, the integrated use of data

assimilation and hydrological models has been cited as

the most promising approach. Some early feasibility and

field-scale studies demonstrated improvements in near-

surface and bulk subsurface soil moisture through data

assimilation (Calvet et al. 1998; Heathman et al. 2003;

Montaldo et al. 2001; Reichle et al. 2002a; Walker et al.

2001, 2002; Reichle and Koster 2003). Improvements

in surface and root-zone soil moisture through data

assimilation of global satellite retrievals have recently

been demonstrated (Reichle and Koster 2005; Reichle

et al. 2007; Drusch 2007). Taken together, these studies

describe the development of advanced methodologies

and establish the potential of near-surface soil mois-

ture data assimilation to infer estimates of subsurface

profiles.

Data assimilation techniques rely on the inherent

surface–root zone connection to propagate surface in-

formation to deeper soil layers. The subsurface physics

used in the land surface model, therefore, is an important

factor in determining the strength and validity of the

downward propagation of surface information. In this

article, we evaluate how the use of different subsurface

physics affects the data assimilation performance, espe-

cially in the root-zone assimilation products. The exper-

iment is conducted with four land surface models (LSMs)

of varying complexity [Catchment (Cat), Mosaic (Mos),

Noah, and Community Land Model (CLM)]—each ap-

plying different subsurface physics schemes. As we will

show, the Catchment and Mosaic LSMs exhibit particu-

larly strong soil moisture coupling between its surface and

root zones, whereas Noah and CLM show successively

weaker connections between the surface and root zone.

Synthetic observations generated from control in-

tegrations using each of the four models are reassimi-

lated into the same model and cross-assimilated into

each of the other three models. This setup leads to

a suite of experiments in which each LSM is provided

with different sets of observations. Depending on the

surface–root zone (vertical) coupling strength of the

LSM, the information from surface observations is ver-

tically propagated differently for each LSM during data

assimilation. The evaluation of the assimilation products

reveals how well each LSM performs in a data assimi-

lation system under varying assumptions of vertical

coupling strength. It must be stressed that the intent of

the experiments is not to judge the veracity of the LSMs

to reproduce large-scale land surface processes and

conditions as they occur in nature. Again, our goal is to

demonstrate how the LSMs perform in a data assimila-

tion system under many different representations of

possible true land surface processes. In particular, we

aim to quantify how the strength of the vertical con-

nection between the surface and root zone (in the as-

similation model or in the assumed ‘‘truth’’) affects the

efficiency and veracity of information transfer into the

root zone through assimilation. Understanding this

transfer is key to exploiting the information content of

the next generation of satellite soil moisture retrievals

from the Soil Moisture and Ocean Salinity (National

Research Council 2007) and the Soil Moisture Active

and Passive (Kerr et al. 2001) satellite missions to be

launched in 2009 and 2013, respectively.

2. Approach

a. Land surface models

This study is conducted using the Land Information

System (LIS) data assimilation test bed, which provides

a framework for the integrated use of several community

LSMs, observation types, and sequential data assimila-

tion algorithms (Kumar et al. 2008b). The interoperable

features of the LIS framework (Kumar et al. 2006; Peters-

Lidard et al. 2007; Kumar et al. 2008a) make it an ideal

platform for conducting the intercomparison experi-

ments presented here.

The suite of experiments presented in this article is

conducted four community LSMs: (i) National Aero-

nautics and Space Administration (NASA) Catchment

LSM (Koster et al. 2000); (ii) Mosaic LSM (Koster
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and Suarez 1996); (iii) Noah LSM (Ek et al. 2003); and

(iv) CLM, version 2.0 (Dai et al. 2003). All four models

dynamically predict land surface water and energy fluxes

in response to surface meteorological forcing inputs, but

they differ in their structural representation of surface

and subsurface water, and energy balance processes.

Three of the four models are traditional land surface

schemes that model soil moisture dynamics by solving

a layer-based formulation of the standard diffusion

and gravity drainage equations for unsaturated flow.

Mosaic has three soil layers: (i) a thin 2-cm surface layer,

(ii) a 148-cm middle layer, and (iii) a 200-cm-thick bot-

tom layer. Noah uses four soil layers of increasing thick-

nesses of 10, 30, 60, and 100 cm. CLM (as used here)

employs a more highly discretized representation of

the subsurface with 10 unevenly spaced layers. CLM’s

layers have thicknesses of 1.75, 2.76, 4.55, 7.5, 12.36,

20.38, 33.60, 55.39, 91.33, and 113.7 cm, respectively.

The Catchment LSM, by contrast, is nontraditional,

in that the vertical soil moisture profile is determined

through deviations from the equilibrium soil moisture

profile between the surface and the water table. Soil

moisture in a 2-cm surface layer and a 100-cm root-zone

layer is then diagnosed from the modeled soil moisture

profile. The Catchment model includes an explicit treat-

ment of the horizontal variation of soil water and water

table depth within each hydrological catchment based on

topographic variations within the catchment. The Catch-

ment model is typically used with hydrologically defined

catchments (or watersheds) as basic computational units.

For ease of model intercomparison, however, the Catch-

ment LSM is used on a regular latitude–longitude grid in

this study.

For the remainder of the paper and for clean com-

parison of output across LSMs, we define root-zone soil

moisture as the soil moisture content in the top 1 m of

the soil column, regardless of the LSM and its (poten-

tially different) native definition of the term. In other

words, our root-zone moisture content is derived as

a suitably weighted vertical average over the model

layers that are within the top 1 m of the soil column. By

contrast, we refer to surface soil moisture as the top-

most layer of each model. The specific layer depth for

surface soil moisture is 2 cm for Catchment and Mosaic,

1.75 cm for CLM, and 10 cm for Noah.

b. Ensemble Kalman filter

The EnKF is widely used as an effective technique for

soil moisture assimilation (Reichle et al. 2002a,b; Crow

and Wood 2003; Zhou et al. 2006). The EnKF provides

a flexible approach for incorporating errors into the

model and the observations. Its ensemble-based treat-

ment of errors makes it suitable for handling the modestly

nonlinear dynamics and the temporal discontinuities that

are typical of land surface processes. We employ the

EnKF approach in all the experiments presented in this

article.

The EnKF alternates between an ensemble forecast

step and a data assimilation update step (Reichle et al.

2002b). In the forecast step, an ensemble of model states

is propagated forward in time using the land surface

model. In the update step at time k, this model forecast is

adjusted toward the observation based on the relative

uncertainties, with appropriate weights expressed in the

‘‘Kalman gain’’ Kk:

x i1
k � x i�

k 5 K
k
(y i

k � H
k
x i�

k ). (1)

The state and (suitably perturbed) observation vectors

are represented by xk and yk, respectively. The obser-

vation operator Hk relates the model states to the ob-

served variable. The superscripts i2 and i1 refer to the

state estimates of the ith ensemble member before (2)

and after (1) the update, respectively. Put differently,

Eq. (1) states that the analysis increments (xi1
k � xi�

k ) are

computed by multiplying the innovations (yi
k � Hkxi�

k )

with the Kalman gain Kk. The Kalman gain, in turn,

is computed from the observation error covariance Rk

and the forecast error covariance Pk
2 (diagnosed as the

sample covariance of the ensemble of model forecasts):

K
k

5 P�k HT
k [H

k
P�k HT

k 1 R
k
]�1. (2)

Notice that the key term Pk
2Hk

T is the cross covariance

between errors in the model states (e.g., surface and

root-zone soil moisture) and errors in the observed

variable (i.e., surface soil moisture), whereas the term in

square brackets in Eq. (2) is essentially a normalization

factor.

The successive model propagation and update steps

imply that surface information is propagated into the

root zone in two distinct ways. First, during the model

propagation step, soil moisture is exchanged between the

surface and deeper layers according to the modeled soil

moisture dynamics, typically diffusion and gravity drain-

age. Second, whenever a surface soil moisture obser-

vation is available, an increment to deeper-layer soil

moisture is computed and applied in the EnKF update

step, based on the surface innovation and the surface-

root-zone error correlation (as expressed in the Kalman

gain). Given the time scales of soil moisture processes

and the fact that the observed surface layer is typically

thin compared to deeper soil column reservoirs, the

propagation of surface information solely through ver-

tical model physics is relatively inefficient. By contrast,

the updating of deeper-layer soil moisture based on the
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modeled surface–root zone error correlations (expressed

in the ensemble) can provide for an efficient downward

propagation of surface information, as long as errors in

the surface layer are statistically connected to errors in

deeper layers via the model physics.

3. Experiment setup

a. Experiment overview

We designed a suite of synthetic experiments to in-

vestigate the influence of model representation of ver-

tical water transport on assimilation performance. The

basic structure of the experiments is as follows: A land

surface model is selected and an ensemble integration

(without data assimilation) is conducted. Each member

of the ensemble experiences a different realization of

synthetic errors in the forcing inputs and the model

prognostic variables (discussed later). From this en-

semble, a single realization (or ensemble member) is

chosen and assumed to represent the ‘‘true’’ state of the

land surface, referred to as the control (or truth) run.

This synthetic truth serves two purposes: (i) a subset of

the truth surface soil moistures, consistent with satellite

retrieval availability, is isolated, corrupted with syn-

thetic observation errors and then used for assimilation

into the available land surface models; and (ii) the soil

moistures produced in this truth, or ‘‘control,’’ simula-

tion are used to evaluate the accuracy of subsequent

model integrations that assimilate synthetic observa-

tions generated from this truth. The mean over all

members of the ensemble integration represents the

‘‘open loop’’ simulation and represents the model skill

without the benefit of data assimilation. These steps are

repeated for each of the four LSMs, yielding four dif-

ferent sets of truth data, synthetic observations, and

open loop estimates.

Next, a given set of synthetic observations is assimi-

lated into each of the four land surface models with the

EnKF (section 2b), resulting in four sets of data assim-

ilation products. Under our original assumption that

a single member of the open loop LSM simulation

(corresponding to the chosen set of synthetic observa-

tions) serves as truth, we can then compute the skill with

which the four assimilation integrations approximate

the truth data. For a given model, the skill found for the

assimilation product minus that for the corresponding

open loop product is our metric of interest (section 3c);

this difference is the skill improvement associated with

data assimilation. The process is then repeated, taking

a simulation from a different model as truth and as-

similating the corresponding synthetic observations into

each of the four LSMs. After each of the four models

serves in turn as truth, we end up with a 4 3 4 matrix of

skill improvement associated with data assimilation.

The columns of the matrix represent the different ver-

sions of truth. Each row of the matrix corresponds to

a specific model used for assimilation, showing how as-

similation improves its product relative to its open loop

product under different versions of truth.

Note that for a given assumed truth, one of the four

model experiments is an ‘‘identical twin’’ experiment,

meaning that the model providing the truth is the same

as that used in the assimilation integration. The other

three experiments are referred to as ‘‘fraternal twin’’

experiments because they use an LSM in the assimila-

tion system that is different from that which was used to

generate the synthetic truth data for these experiments.

This distinction is important in interpreting the matrix of

results.

b. Experiment details

All model and assimilation integrations are conducted

over a gridded domain that roughly covers the conter-

minous United States (CONUS; from 30.58N, 124.58W

to 50.58N, 75.58W) at 18 spatial resolution. The LSMs are

driven with meteorological forcing data from the Global

Data Assimilation System (GDAS); the global meteo-

rological weather forecast model of the National Cen-

ters for Environmental Prediction (Derber et al. 1991).

First, the models are spun up by cycling 3 times through

the period from 1 January 2000 to 1 January 2007. This

ensures that the internal model prognostic states have

adequate time to reach an equilibrium consistent with

the model climatology, meteorological forcing, and pa-

rameters. All model and assimilation integrations are

conducted over the same 7-yr period. To avoid potential

assimilation-related spin-up effects, only data for the

6-yr period from 1 January 2001 to 1 January 2007 are

used in the subsequent analysis.

Each open loop or assimilation experiment with

a given model consists of 12 ensemble members (Kumar

et al. 2008b), and all data assimilation estimates are

based on taking a mean of the ensemble. The ensemble

members differ from each other in two ways: (i) noise is

added to the meteorological forcing and (ii) noise is

added to the model prognostic fields. The parameters

used for these perturbations are listed in Tables 1a–1e.

Zero-mean, normally distributed additive perturbations

are applied to the downward longwave radiation (LW)

forcing, and lognormal multiplicative perturbations with

a mean value of 1 are applied to the precipitation (P)

and downward shortwave radiation (SW) fields (Table 1a).

Time series correlations are imposed via a first-order

regressive model [AR(1)] with a time scale of 24 hours.

No spatial correlations are applied because this study

uses the one-dimensional version of the EnKF (Reichle
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and Koster 2003). Cross correlations are imposed on the

perturbations of radiation and precipitation fields using

the values specified in Table 1a.

Model prognostic variables for each LSM are per-

turbed with additive noise, with additional vertical cor-

relations imposed on the perturbations for the Noah,

CLM, and Mosaic LSMs’ prognostic variables. The pa-

rameters for the Catchment LSM (Table 1b) are based

on the values of Reichle et al. (2008). The parameters

for the other land surface models (Tables 1c–1e) are

designed to yield comparable ensemble spreads and

comparable open loop skills. For all model prognostic

perturbations, we impose AR(1) time series correlations

with a 12-h time scale. Further, it was also ensured that

these error settings do not introduce systematic biases in

the truth and open loop integrations relative to the

standard, unperturbed model integrations.

For the assimilation experiments, the synthetic soil

moisture retrievals require some special preprocessing.

To account for difficulties in retrieving soil moisture

products from microwave sensors, the synthetic obser-

vations are masked out for high vegetation density

(specifically, when the green vegetation fraction values

used in Noah exceed 0.7). Also, the soil moisture ‘‘ob-

servations’’ are masked out when snow is present on the

ground, the soil is frozen, and during precipitation

events to mimic the difficulty of retrieving soil moisture

during these events. The data masks for snow and frozen

soil are generated based on the snow cover and soil

temperature values from the control integrations of all

four models. Further, random Gaussian noise with an

error standard deviation of 0.03 m3 m23 (volumetric soil

moisture) is added to the synthetic observations to mimic

measurement uncertainty.

Data assimilation methods (including the EnKF) are

designed to correct random errors in the model back-

ground and assume that model and observations are

climatologically unbiased. The climatologies of the model

and satellite estimates, however, are typically very dif-

ferent, as are the climatologies of estimates from dif-

ferent land surface models. Such climatological biases

must be addressed as part of the assimilation experi-

ment. Here, we adopt the a priori scaling method of

Reichle and Koster (2004). In this approach, the ob-

servations are scaled to the model’s climatology so that

the cumulative distribution functions (CDFs) of the

observations and the model match (for each grid point).

The scaling of observations is performed prior to each

assimilation experiment (except for identical twin ex-

periments, for which this scaling is not necessary be-

cause the observations are generated from the same land

surface model that is used in the assimilation integra-

tion). CDF matching can be used with new satellite

sensors only after robust CDF estimates have been ob-

tained. Reichle and Koster (2005) show that data re-

cords of one year are adequate.

c. Evaluation metric: Normalized information
contribution

Because the observations are scaled prior to the as-

similation experiment, the anomaly time series correla-

tion (rather than RMSE) is used quantify the skill of the

estimates. This anomaly time series is obtained (for each

grid point) as follows. We subtract the monthly-mean

climatology of each dataset from the corresponding daily

TABLE 1. (a) Perturbation parameters for SW, LW, and P

forcings. (b) Perturbation parameters for Cat model prognostic

variables. Cross correlations are not imposed. (c) Perturbation

parameters for Mos sm prognostic variables. Variable sm1 repre-

sents top-most layer. (d) Same as (c) but for Noah. (e) Same as (c)

but for CLM.

Variable Std dev

Cross correlations with

perturbations

SW LW P

SW 0.30 (2) 1.0 20.5 20.8

LW 50 W m22 20.5 1.0 0.5

P 0.50 (2) 20.8 0.5 1.0

Variable Std dev (mm)

Catchment deficit 0.14

Surface excess 0.03

Variable

Std dev

(m3 m23)

Cross correlations with

perturbations

sm1 sm2 sm3

sm1 1.70E-3 1.0 0.6 0.3

sm2 1.50E-4 0.6 1.0 0.6

sm3 1.00E-4 0.3 0.6 1.0

Variable

Std dev

(m3 m23)

Cross correlations with

perturbations

sm1 sm2 sm3 sm4

sm1 6.00E-3 1.0 0.6 0.4 0.2

sm2 1.10E-4 0.6 1.0 0.6 0.4

sm3 6.00E-5 0.4 0.6 1.0 0.6

sm4 4.00E-5 0.2 0.4 0.6 1.0

Variable

Std dev

(m3 m23)

Cross correlations with perturbations

sm1 sm2 sm3 sm4 sm5 sm6 sm7 sm8 sm9 sm10

sm1 1.00E-3 1.0 0.7 0.7 0.6 0.6 0.6 0.6 0.4 0.4 0.4

sm2 7.00E-4 0.7 1.0 0.7 0.7 0.6 0.6 0.6 0.6 0.4 0.4

sm3 5.00E-4 0.7 0.7 1.0 0.7 0.7 0.6 0.6 0.6 0.6 0.4

sm4 3.00E-4 0.6 0.7 0.7 1.0 0.7 0.7 0.6 0.6 0.6 0.6

sm5 2.00E-5 0.6 0.6 0.7 0.7 1.0 0.7 0.7 0.6 0.6 0.6

sm6 2.00E-5 0.6 0.6 0.6 0.7 0.7 1.0 0.7 0.7 0.6 0.6

sm7 2.00E-5 0.6 0.6 0.6 0.6 0.7 0.7 1.0 0.7 0.7 0.6

sm8 1.50E-6 0.4 0.6 0.6 0.6 0.6 0.7 0.7 1.0 0.7 0.7

sm9 1.50E-6 0.4 0.4 0.6 0.6 0.6 0.6 0.7 0.7 1.0 0.7

sm10 5.00E-8 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.7 0.7 1.0
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average raw data, so that the anomalies represent the

daily deviations from the mean seasonal cycle. Therefore,

we do not take advantage of the ‘‘skill’’ inherent in the

seasonal cycle. Subsequently, we compute the time series

correlation coefficient between the daily anomaly esti-

mates and the corresponding anomalies of the truth data,

at each grid point. Note that only grid points with a min-

imum of 600 valid observations for the evaluation period

are included in the comparisons.

To evaluate improvements due to assimilation, a nor-

malized information contribution (NIC) metric is com-

puted as follows: the monthly anomaly time series

coefficients Ra for the assimilation and Ro for the open

loop integrations are computed. A normalized informa-

tion contribution is then defined as NIC 5 (Ra 2 Ro)/

(1 2 Ro), which is a measure of how much of the max-

imum skill improvement (1 2 Ro) is realized through

data assimilation (Ra 2 Ro). Assuming that the assimi-

lation product is no worse than the model-only output

(Ra . Ro), we have 0 # NIC # 1. For NIC 5 0, the

assimilation of surface soil moisture does not add any

information to the assimilation product, and for NIC 5 1,

the assimilation realizes the maximum skill improve-

ment possible. The NIC metric is needed primarily be-

cause it is extremely difficult—if not impossible—to

achieve identical open loop skill for different LSMs for

all the 16 assimilation simulations. Hereinafter, we also

refer to the NIC metric loosely as the ‘‘skill improvement’’

through data assimilation.

4. Results and discussion

Before analyzing the contribution of the surface re-

trievals in the data assimilation system, it is informative

to take a closer look at how surface soil moisture is

connected to root-zone soil moisture in the four LSMs,

and how errors in the surface layer are connected to

errors in the root zone.

a. Vertical coupling strength and gain correlation

As discussed earlier, each land surface model pos-

sesses a different representation of soil moisture dy-

namics based on its particular parameterizations of soils

and vegetation properties, and processes related to the

partitioning of rainfall into infiltration, runoff, and

evaporation components. As a result, the coupling be-

tween the surface and subsurface soil moisture is dif-

ferent in each LSM. One way of measuring the vertical

coupling strength is through correlating soil moisture

anomalies in the surface layer with anomalies in root-

zone soil moisture. More precisely, we define the (spa-

tially distributed) ‘‘native vertical coupling strength’’ as

the anomaly correlation coefficient between surface and

root-zone soil moisture time series, for a given truth

model integration without data assimilation. Put dif-

ferently, the native vertical coupling strength measures

the degree to which a positive (negative) anomaly in

surface soil moisture coincides with a positive (negative)

anomaly in the root zone.

This native vertical coupling strength is shown in Fig. 1

for each of the four LSMs, by only including the loca-

tions and times at which surface soil moisture retrievals

are available. Our subsequent analysis of the data as-

similation performance follows a similar strategy, meant

to characterize the skill improvements only at observa-

tion times and locations. Figure 1 shows that the surface

and root-zone soil moisture are most tightly coupled in

the Catchment model, followed by Mosaic and Noah.

CLM has the weakest coupling strength, possibly as

a result of its use of the most soil layers. In other words,

for soil moisture produced by the Catchment model,

knowledge of a surface anomaly is more informative

about root-zone anomalies (at a given point in time)

than for the other LSMs. Across all models, the native

vertical coupling strength tends to be somewhat larger

in the south and in the east of the domain, which is

likely influenced by the generally wetter climate and

the relative absence of cold-season processes. Note again

that we only compare the coupling strength between

different models, and we do not claim that a particular

model has the least or most realistic representation of the

coupling strength that occurs in nature.

The native coupling strength is an important metric

that diagnoses the connection between surface and root-

zone soil moisture. It does not, however, directly mea-

sure how much a surface observation contributes to an

update of root-zone soil moisture in the EnKF. The

surface–root zone connection in the data assimilation

update is based on the modeled error correlations and

can be diagnosed by a closer look at the Kalman gain. In

the assimilation update step, the EnKF method com-

putes analysis increments for surface and root-zone soil

moisture based on the Kalman gain and the innovations

[Eqs. (1) and (2)]. Because we use a ‘‘one dimensional’’

EnKF (Reichle and Koster 2003), the observations are

effectively scalars and the gain is a vector. The element

Kj of the gain that corresponds to a particular (model

specific) soil moisture layer j is thus directly pro-

portional to the error covariance between the model

forecast soil moisture in the surface layer and that in

layer j, labeled xsf and xj, respectively:

K
j
} cov(x�sf , x�j ). (3)

The Kj’s can easily be calculated from the ensemble at

each update time during each assimilation integration.
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Next, we compute a (spatially distributed) scalar root-

zone gain Krz for the top 100-cm root-zone layer through

model-specific vertical averaging of the Kj’s. Hereinafter,

Krz is referred to as the ‘‘gain correlation’’ metric. It is

determined primarily by the model physics and by our

choice of perturbation input parameters (in particular,

the vertical correlations in the perturbations to the soil

moisture states listed in Tables 1b–1e). Most importantly,

FIG. 1. (left) Anomaly time series correlation coefficient (native VCS) between surface and root-zone sm and (right) time average gain

correlations from the assimilation experiments for (from top): Cat, Mos, Noah, and CLM. Numbers above show domain averaged values.
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the gain correlation directly indicates the size of the root-

zone increment that results from a unit innovation and

measures by how much a surface observation affects ad-

justments of root-zone soil moisture through the EnKF

update.

Figure 1 also shows the time-average gain correlation

for each LSM (averaged over the four assimilation ex-

periments for which the given LSM was used in the as-

similation system). The gain correlation trends are

similar to the trends observed in the native vertical

coupling strengths of each LSM, with Catchment having

the highest value and Mosaic, Noah, and CLM having

successively lower values. Across all models, the gain

correlations exhibit slightly larger values in the southern

and eastern parts of the domain. The comparison of the

vertical coupling strength and gain correlations in Fig. 1

suggests that in assimilation integrations using a LSM

with strong surface–root zone coupling—Catchment

or Mosaic, for example—root-zone increments tend to

correlate strongly with surface innovations. Similarly,

using a LSM with weaker surface–root zone coupling is

likely to produce less correlation between root-zone

increments and surface innovations.

b. Assimilation performance

Let us now turn to the analysis of skill improvement

through assimilation of surface observations. Tables 2

and 3 list the skill improvement (as domain-averaged

NIC values, section 3c) for the surface and root-zone soil

moisture products, respectively. As mentioned earlier,

the NIC values are computed using anomalies at times

and locations for which surface soil moisture retrievals

are available, representing skill improvements relative

to possible observation instances.

Each table presents the domain-averaged NIC values

obtained from all 16 assimilation experiments, consti-

tuting the 4 3 4 matrix of skill improvements described

in section 3. Again, the diagonal elements of this matrix

represent the identical twin experiments and the off-

diagonal elements represent the fraternal twin experi-

ments. Note first that the skill improvements from the

identical twin experiments are generally larger than

those from the fraternal twin experiments, for both

surface and root-zone products. On average, the NIC

values on the diagonal (corresponding to identical twin

experiments) exceed the off-diagonal elements of the

corresponding fraternal twin experiments by 0.18 for

surface soil moisture improvements and by 0.24 for root-

zone soil moisture improvements. In a relative sense,

identical twin experiments overestimate the skill de-

rived from the assimilation of surface observations by

42% for surface soil moisture estimates and by 71% for

root-zone soil moisture estimates. Our first important

conclusion is therefore that the identical twin experi-

ments significantly overestimate the benefits derived

from data assimilation relative to the fraternal experi-

ments, which are more likely to represent the assimila-

tion of actual satellite observations.

Each column of Tables 2 and 3 represents the benefit

of surface soil moisture assimilation under a given sce-

nario of true soil moisture physics, as obtained from

different model representations. Correspondingly, the

rows of Tables 2 and 3 measure the improvements from

assimilation of surface observations into a particular

LSM for a range of potential truths. If one assumes that

each synthetic truth is equally likely, the mean over the

row values represents an ‘‘expected value of skill im-

provement’’ in a data assimilation system that uses

a particular LSM as its land model component. We have

no way, of course, of justifying the assumption of equal

likelihood here. We can say, though, that the spreads in

the averages are larger for Table 3 than for Table 2,

suggesting that although the ability of the LSMs to

generate surface soil moisture information is compara-

ble, model skill with regard to capturing root-zone in-

formation varies significantly.

In conjunction with Fig. 1, Tables 2 and 3 suggest that

the skill improvements in the root zone for a given lo-

cation can be represented as a function of two factors:

(i) the vertical coupling strength of the model used to

generate the truth (hereafter VCS-truth) and (ii) the ver-

tical coupling strength of the model used in the assimila-

tion system (hereafter VCS-assimilation). To investigate

TABLE 2. NIC of assimilated surface sm to skill in surface sm

anomalies. Columns indicate which LSM is used in the generation

of the synthetic truth and retrievals, and rows indicate which model

is used to assimilate the synthetic retrievals. Last row and column

indicate averages across all models.

Surface

Truth

Cat Mos Noah CLM Avg

Cat 0.71 0.44 0.39 0.33 0.47

Mos 0.43 0.59 0.54 0.57 0.53

Noah 0.40 0.44 0.53 0.45 0.46

CLM 0.37 0.52 0.45 0.67 0.50

Avg 0.48 0.50 0.48 0.49

TABLE 3. Same as Table 2 but for root-zone sm NIC values.

Root zone

Truth

Cat Mos Noah CLM Avg

Cat 0.72 0.54 0.37 0.38 0.50

Mos 0.55 0.70 0.32 0.34 0.48

Noah 0.44 0.36 0.44 0.26 0.38

CLM 0.11 0.22 0.11 0.45 0.22

Avg 0.46 0.48 0.29 0.36
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this point further, Fig. 2 stratifies (‘‘bins’’) the root-zone

NIC values for all spatial locations and for all 12 fra-

ternal twin assimilation integrations based on these two

factors. (We exclude the results from the identical twin

experiments because they overestimate the skill im-

provements from data assimilation. If we had included

them, only the diagonal points in the figure would

change; the values along the diagonal would indeed in-

crease, but the overall trends seen would remain the

same.) The diagonal (shown in Fig. 2) from the lower-

left corner to the upper-right corner represents the skill

improvement values when the VCS-model and VCS-

assimilation values are roughly the same. On or off the

diagonal, the skill improvements are generally higher

for higher values of VCS-truth and VCS-assimilation, as

indicated by the upper-right corner in Fig. 2.

This result is intuitive. Recall from Fig. 1 that Catchment

and Mosaic LSMs exhibit higher positive gain correla-

tions than Noah and CLM LSMs, which implies that

positive surface soil moisture innovations in Catchment

and Mosaic lead to correspondingly positive increments

in the root zone. Now recall that there is a strong cor-

relation between the surface and root-zone soil moisture

in the Catchment and Mosaic LSMs (as measured by

each model’s native coupling strength; Fig. 1). When the

LSMs with strong VCS serve as the truth, the assimila-

tion system tends to produce root-zone increments with

the appropriate sign. This implies that the assimilation

system does not need to rely as much on the less efficient

process of propagating the surface increments into the

root zone through the model physics. In other words,

stronger vertical coupling makes it easier for the as-

similation system to infer the root-zone estimates from

the surface information. This trend is also consistent

with Table 3, where the column averages of NICs are

higher for Catchment and Mosaic truths, which have

stronger vertical coupling strengths than Noah and CLM

truths.

Simply put, if truth and the model in the assimilation

system both show a strong connection between the

surface and root zone (i.e., a strong VCS), surface in-

formation is more efficiently transferred to the root

zone, increasing the skill scores. Figure 2 serves to

quantify this intuitive result with an ensemble of models

and data assimilation techniques.

The trends in Fig. 2 also indicate a slight asymmetry in

the NIC surface with the upper triangular area (relative

to the lower left–upper right diagonal) showing higher

FIG. 2. Root zone normalized information contribution from the fraternal twin assimilation

runs as function of the (abscissa) native VCS of the model used for generating VCS-truth and

(ordinate) native VCS of the model used in the assimilation integration.
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NIC values than the lower triangular area. This implies

that, for a given VCS-truth, the use of a model with

higher native VCS-assimilation tends to produce stron-

ger skill improvements. This suggests that unless it is

clear that a weak surface–root zone representation is the

best modeling strategy, it is prudent to use a LSM with

strongly coupled surface and root zone in the data as-

similation. It must be noted that this inference is a direct

result of the inclusion of CLM in the analysis. As evident

from Table 3, the NIC values tend to be lower in the

fraternal twin experiments with CLM as the assimilation

model. We speculate that the highly discretized soil

profile representation of CLM contributes to its rela-

tively lower VCS. This hypothesis can be tested by

changing the layering structure of a LSM and is left for

a future research study. When CLM is excluded from the

previously mentioned analysis, the asymmetry is no

longer observed in Fig. 2. (Again, our analysis does not

suggest that CLM represents natural processes particu-

larly well or particularly poorly.) Another interesting

trend to note is that the even when the assimilation

model overestimates the truth vertical coupling strength

by up to 0.1, the skill improvements from assimilation

still shows an increase as the VCS-truth increases.

To compute the statistical significance of the NIC

values, the 99% confidence intervals of the anomaly

time series correlation coefficients for the assimilation

(dRa) and the open loop integrations (dRo) are trans-

lated into a corresponding 99% confidence interval for

the NIC values (dNIC) using Eq. (4):

dNIC 5 dR
a

1

(1� R
o
)

1 dR
o

(R
a
� 1)

(1� R
o
)2

. (4)

Using this formulation, the 99% confidence intervals

computed for the NIC values provide a range of ap-

proximately 60.002, indicating a high level of statistical

significance in the skill improvement trends presented in

Fig. 2 and Tables 2 and 3.

The dependence of the skill improvements from the

assimilation runs to different climate regions is exam-

ined by stratifying the domain geographically. Figure 3

shows the average NIC values from different LSMs

(averaged over the rows of the 4 3 4 matrix as in the

FIG. 3. NIC by geographic regions for Cat, Mos, Noah, and CLM.
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‘‘unknown truth’’ scenario) for five different geographic

regions. (Notice that the region in the northeast location

is omitted because there are not enough valid observa-

tion retrievals in this area). For each LSM, the trends in

the skill improvements are similar across the five re-

gions. In Catchment and Mosaic LSMs, the magnitude

of skill improvements in the root zone is comparable to

the improvements in surface soil moisture, whereas for

Noah and CLM, the root-zone skill improvements are

smaller than the surface skill improvements. This trend

is consistent with our earlier result that models with

strong vertical coupling are likely to generate root-zone

skill improvements more strongly correlated with sur-

face skill improvements. In the three southern regions,

the skill improvements generally increase going from

west to east, consistent with the generally drier climate

in the west compared to the generally wetter climate in

the east. The wetter conditions lead to more tightly

coupled surface and root-zone conditions, which are

easier to replicate, as evident in Fig. 2. Further, the skill

improvements in the northern regions are marginally

lower than the corresponding values in the southern

regions. This could be due to the additional interaction

of cold-season processes and soil moisture dynamics,

which may lead to a decoupling of the surface and root-

zone soil moisture for part of the year.

The strength of coupling between different soil layers

is also influenced by the soil texture types used in the

models (Capehart and Carlson 1997). Figure 4 shows

a comparison of NIC values stratified according to the

soil texture types in the domain. The skill improvements

corresponding to sandier soils (loamy sand, sandy loam,

sandy clay loam) are smaller than the improvements in

clayey soils (loam, clay loam, clay). The clayey soils

exert stronger capillary forces than sandy soils, and

therefore they show more tightly correlated surface and

root-zone improvements in all LSMs.

5. Summary

Here we investigate the effect of various land surface

model physics on soil moisture products derived through

the assimilation of surface soil moisture retrievals. In the

assimilation system, observed surface information is

propagated into deeper soil layers, giving the surface

retrievals an otherwise unobtainable relevance to such

applications as the initialization of weather and seasonal

climate forecasts. Because the LSMs differ significantly

in their representation of subsurface water dynamics,

the downward propagation of the surface information in

the assimilation system strongly depends on which LSM

is used as the system’s model component. Here we study

how the specific formulation of the LSM that is used in

FIG. 4. NIC by soil texture—1: loamy sand; 2: sandy loam;

3: sandy clay loam; 4: loam; 5: clay loam; 6: clay—for (top to bottom)

Cat, Mos, Noah, and CLM.
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the assimilation system affects the information contri-

bution to soil moisture assimilation products.

The experiments presented in this article were con-

ducted with the Catchment, Mosaic, Noah, and CLM

land surface models and the EnKF data assimilation

algorithm. The modeling domain roughly covers the

continental United States for a 6-yr period. The LSMs

vary in complexity in their representation of subsurface

soil moisture dynamics. The Catchment LSM essentially

describes deviations from the equilibrium soil moisture

profile and has a relatively strong vertical coupling be-

tween the surface and root-zone soil moisture. By con-

trast, the layer-based models Mosaic (3 layers), Noah

(4 layers), and CLM (10 layers) have successively weaker

coupling between their surface and root zones.

Our synthetic experiments consisted of assimilating

each of four synthetic retrievals datasets (based on in-

tegrations of each of the four LSMs) into four separate

EnKF-based assimilation systems that use the four

LSMs as their model component. The resulting 16 as-

similation soil moisture products were evaluated against

the corresponding synthetic truth datasets and com-

pared to corresponding model integrations without the

benefit of data assimilation. This information was sum-

marized in a skill improvement metric that measures the

normalized information contribution of the surface soil

moisture retrievals to the skill of the soil moisture as-

similation products (relative to the maximum possible

improvement). This experiment setup allowed us to in-

vestigate the information contribution under a variety of

combinations of possible true soil moisture dynamics

with assimilation systems that use a range of LSMs.

The results clearly demonstrate that the assimilation

of surface soil moisture provides improvements in the

root-zone estimates. The magnitude of the improve-

ments depends on the LSM that is used in the assimi-

lation system and on the (synthetic) true subsurface

physics (i.e., on the LSM that is used to generate the

synthetic truth and the corresponding synthetic re-

trievals). Generally, identical twin experiments tend to

overestimate skill improvements when compared to those

of more realistic fraternal twin experiments. Likewise, the

potential for improvements in the root zone is generally

higher if the true subsurface physics exhibits a strong

correlation between the surface and root zone, especially

if the assimilation model also shows such a strong corre-

lation. For weaker surface–root zone coupling strength,

surface soil moisture assimilation yields more limited

improvements in the root zone.

The results also provide insights into the optimal

choice of LSM for soil moisture assimilation when the

true subsurface physics is essentially unknown. An LSM

with a strongly coupled representation of the surface

and subsurface is perhaps a more robust choice for

assimilation, unless independent information suggests

that the use of a LSM with a more decoupled surface–

subsurface representation is more realistic. We must

emphasize here, however, that appropriate independent

information (e.g., from soil moisture observations) is es-

sentially unavailable. Point measurements of soil mois-

ture exist but are not necessarily representative of

large-scale vertical coupling strength. At large scales, the

connection between the surface and root zone must be

controlled in part (and probably enhanced) by lateral

flow induced by topography and must, in any case, be

affected by spatial heterogeneity in surface properties.

Arguably, the ‘‘true’’ vertical coupling strength in na-

ture for large-scale areas is unknown at this time.

The improvements in the soil moisture products

through assimilation were found to be sensitive to the

local climate and also to the soil types used in the land

surface models, which can in turn be explained by the

dependence of the models’ vertical coupling strength on

soil type and regional climate. A statistical analysis of the

computations demonstrates a high degree of statistical

significance in the skill improvement values, and corre-

spondingly in the trends demonstrated in the article.

The comparison of the performance of different land

surface models in response to the assimilation of surface

soil moisture observations presented in this study is

enabled by the LIS framework, which provides a unique

environment for such a uniform intercomparison. The

capabilities in LIS to use different forcing datasets, ob-

servations, and land surface models in an interoperable

manner has enabled the rapid specification, calibration,

and application of the land surface models for data as-

similation. The methodology demonstrated here with

the LIS framework can be used as a guideline to eval-

uate the feasibility of using a land surface model for soil

moisture assimilation. The procedure also provides

a way to generate realistic measures of skill improve-

ments from soil moisture assimilation, different from the

identical twin experiment setup typically used to cali-

brate the assimilation system. Lastly, the insights

obtained on each model’s performance through this

study is expected to aid in their application for real as-

similation experiments.
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